Short-term electricity demand forecasting using double seasonal exponential smoothing
نویسندگان
چکیده
منابع مشابه
Short-term electricity demand forecasting using double seasonal exponential smoothing
This paper considers univariate online electricity demand forecasting for lead times from a half-hour-ahead to a day-ahead. A time series of demand recorded at half-hourly intervals contains more than one seasonal pattern. A within-day seasonal cycle is apparent from the similarity of the demand profile from one day to the next, and a within-week seasonal cycle is evident when one compares the ...
متن کاملTriple seasonal methods for short-term electricity demand forecasting
Online short-term load forecasting is needed for the real-time scheduling of electricity generation. Univariate methods have been developed that model the intraweek and intraday seasonal cycles in intraday load data. Three such methods, shown to be competitive in recent empirical studies, are double seasonal ARMA, an adaptation of Holt-Winters exponential smoothing for double seasonality, and a...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملForecasting Intermittent Demand by Hyperbolic-Exponential Smoothing
Croston’s method is generally viewed as superior to exponential smoothing when demand is intermittent, but it has the drawbacks of bias and an inability to deal with obsolescence, in which an item’s demand ceases altogether. Several variants have been reported, some of which are unbiased on certain types of demand, but only one recent variant addresses the problem of obsolescence. We describe a...
متن کاملForecasting time series with complex seasonal patterns using exponential smoothing
A new innovations state space modeling framework, incorporating Box-Cox transformations, Fourier series with time varying coefficients and ARMA error correction, is introduced for forecasting complex seasonal time series that cannot be handled using existing forecasting models. Such complex time series include time series with multiple seasonal periods, high frequency seasonality, non-integer s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Operational Research Society
سال: 2003
ISSN: 0160-5682,1476-9360
DOI: 10.1057/palgrave.jors.2601589